Synthesis and NMR spectroscopy of $\left[\mathrm{t}-\mathrm{Bu}_{2} \mathrm{PHg}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right]$, $\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$ and X -ray structure for $\mathrm{M}=\mathrm{Cr}, \mathrm{W}$

Johann Eichbichler, Richard Malleier, Klaus Wurst, Paul Peringer *
Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

Received 2 January 1997; accepted 9 January 1997

Abstract

The title complexes $\left(\mathrm{M}=\mathrm{Cr}(1), \mathrm{Mo}(2)\right.$ and $\mathrm{W}(3)$) are prepared in almost quantitative yield from $\left[\mathrm{t}-\mathrm{Bu}_{2} \mathrm{PHgN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ and $\left[\mathrm{M}\left(\mathrm{HPPh}_{2}\right)(\mathrm{CO})_{5}\right]$ or in 70% yield by synproportionation of $\left[\mathrm{Hg}\left(\mathrm{t}-\mathrm{Bu}_{2} \mathrm{P}\right)_{2}\right]$ and $\left[\mathrm{Hg}\left\{(\mu-\mathrm{PPh} 2) \mathrm{M}(\mathrm{CO})_{5}\right\}_{2}\right]$. The compounds are crystalline, air-stable in the solid state but oxygen-sensitive in solution. The solid state structures of $\mathbf{1}$ and 3 consist of dimers containing four-membered $(\mathrm{Hg}-\mathrm{P})_{2}$ rings with asymmetric phosphido bridges (252.2(2) pm and $268.9(2) \mathrm{pm}$ for 1). The coordination geometry of Hg is almost planar. According to ${ }^{31} \mathrm{P}$ and ${ }^{199} \mathrm{Hg}$ NMR spectroscopy, the solution structure consists of dimers at 173 K , whilst dissociation into monomers occurs at ambient temperature. © 1997 Elsevier Science S.A.

Keywords: Mercury; Chromium; Molybdenum; Tungsten; X-ray crystallography

1. Introduction

The bonding mode of the phosphido group in mercury complexes $\left[\mathrm{R}_{2} \mathrm{PHgX}\right]$ depends on the nature of X . Terminal phosphido groups are present in $\left[\mathrm{Hg}\left(\mathrm{t}-\mathrm{Bu}_{2} \mathrm{P}\right)_{2}\right]$ which was described as having a two-coordinate linear geometry in the solid state [1]. A similar structure was reported for $\left[\mathrm{Hg}\left\{\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{P}\right\}_{2}\right]\right.$ [2]. Both complexes are monomeric in solution. The solution phase structure of $\left[\mathrm{t}-\mathrm{Bu}_{2} \mathrm{PHgN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ also contains terminal dibutylphosphido ligands [3]. Bridging phosphido ligands are formed in compounds $\left[\mathrm{R}_{2} \mathrm{PHgX}\right.$], where X causes sufficient acceptor qualities of the mercury centre. Six-, eight- and ten-membered rings, whose cores are comprised of alternating Hg and P atoms were shown to be present for $\mathrm{X}=\mathrm{O}_{3} \mathrm{SCF}_{3}^{-}, \mathrm{SO}_{4}^{2-}$ and the triazenato ligand $\left(2-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{~N}_{3}^{-}$[4-6]. These structures were derived from ${ }^{31} \mathrm{P}$ and ${ }^{199} \mathrm{Hg}$ solution NMR spectroscopy, but no solid state structures have been determined. We report here on the synthesis, the solution and solid state structures of $\left[\mathrm{t}-\mathrm{Bu}_{2} \mathrm{PHg}(\mu\right.$ $\left.\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}$], $\mathrm{M}=\mathrm{Cr}$, Mo, W.

[^0]
2. Results and discussion

2.1. Synthesis

The asymmetric dinuclear phosphido complexes 1-3 were obtained at ambient temperature by the substitution reaction of Eq. (1) in quantitative yield.

$$
\begin{align*}
& {\left[\mathrm{t}-\mathrm{Bu}_{2} \mathrm{PHgN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]+\left[\mathrm{M}\left(\mathrm{HPPh}_{2}\right)(\mathrm{CO})_{5}\right]} \\
& \quad \Rightarrow\left[\mathrm{t}-\mathrm{Bu}_{2} \mathrm{PHg}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right] \\
& \mathrm{M}=\mathrm{Cr}(\mathbf{1}), \mathrm{Mo}(\mathbf{2}), \mathrm{w}(\mathbf{3}) \\
& \quad+\mathrm{HN}\left(\mathrm{SiMe}_{3}\right)_{2} \tag{1}
\end{align*}
$$

The synthetic strategy of Eq. (1), the proton transfer reaction from HP functions to $\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}$ ligands coordinated to mercury and other metals [2] has previously been applied in the synthesis of $[\mathrm{Hg}\{(\mu$ $\left.\left.\left.\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right\}_{2}\right]$ [7], $\left[\mathrm{Hg}\left(\mathrm{t}-\mathrm{Bu} \mathrm{P}_{2} \mathrm{P}\right)_{2}\right.$] and [t$\mathrm{Bu}_{2} \mathrm{PHgN}\left(\mathrm{SiMe}_{3}\right)_{2}$] [3]. A more recent exarnple is the formation of $\left[\mathrm{Hg}\left(\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{P}\right\}_{2}\right.\right.$ [2].

An alternative pathway is the synproportionation Eq. (2).

$$
\begin{align*}
& {\left[\mathrm{Hg}\left(\mathrm{t}-\mathrm{Bu}_{2} \mathrm{P}\right)_{2}\right]+\left[\mathrm{Hg}\left\{\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right\}_{2}\right]} \\
& \quad \Rightarrow 2\left[\mathrm{t}-\mathrm{Bu}_{2} \mathrm{PHg}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right] \tag{2}
\end{align*}
$$

Table 1
Crystal data for (1) and (3): $\mathrm{M}=\mathrm{Cr}$ for (1), W for (3)

	(1)	(3)
Molecular formula	$\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{Cr}_{2} \mathrm{Hg}_{2} \mathrm{O}_{10} \mathrm{P}_{4}$	$\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{Hg}_{2} \mathrm{O}_{10} \mathrm{P}_{4} \mathrm{~W}_{2}$
Formula weight	1446.01	1709.7
Crystal system	triclinic	triclinic
Space group	P1 (No .2)	$P 1$ (No. 2)
Unit cell dimensions		
$a(\mathrm{pm})$	1073.9(2)	1077.3(3)
b (pm)	$1086.7(1)$	1094.8(2)
$c(\mathrm{pm})$	1233.3(2)	1240.1(3)
α (deg)	96.00(1)	95.99(2)
β (deg)	94.50(1)	94.08(2)
γ (deg)	99.96 (1)	100.26(2)
Volume (nm^{3})	$1.4029(4)$	$1.4253(6)$
Z	,	,
Temperature (K)	223(2)	213(2)
Density (calculated) ($\mathrm{Mg} \mathrm{m}^{-3}$)	1.712	1.992
Absorption coefficient (mm^{-1})	5.997	9.554
Color, habit	yellow, prism	yellow, prism
Crystal size (mm^{3})	$0.5 \times 0.3 \times 0.25$	$0.3 \times 0.15 \times 0.09$

The equilibrium was found to lie to the right of the asymmetric species. The products were isolated as yellow crystalline air-stable solids. Solutions of $\mathbf{1 - 3}$ are oxygen sensitive and are converted to the corresponding dibutylphosphinito complexes 1a-3a (Eq. (3)) which were characterised by ${ }^{31} \mathrm{P}$ NMR spectroscopy.

$$
\begin{align*}
& 2\left[\mathrm{t}-\mathrm{Bu}_{2} \mathrm{PHg}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right]+\mathrm{O}_{2} \\
& \quad \Rightarrow 2\left[\mathrm{t}-\mathrm{Bu}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Hg}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right] \tag{3}
\end{align*}
$$

2.2. Solid state structure

Compounds 1 and 3 were characterised by single crystal X-ray diffraction. Crystal data are collected in

Table 2
Distances (pm) and bond angles (deg) for (1) and (3): $\mathrm{M}=\mathrm{Cr}$ for (1), W for (3)

	$(\mathbf{1})$	(3)
$\mathrm{Hg}(1)-\mathrm{P}(1)$	$245.1(2)$	$244.7(3)$
$\mathrm{Hg}(1)-\mathrm{P}(2)$	$252.2(2)$	$252.6(3)$
$\mathrm{Hg}(1)-\mathrm{P}(2 \mathrm{a})$	$268.9(2)$	$266.0(3)$
$\mathrm{M}(1)-\mathrm{P}(1)$	$243.0(2)$	$255.2(3)$
$\mathrm{M}(1)-\mathrm{C}(1)$	$190.5(9)$	$208.0(13)$
$\mathrm{M}(1)-\mathrm{C}(5)$	$186.3(8)$	$199.5(13)$
$\mathrm{P}(1)-\mathrm{Hg}(1)-\mathrm{P}(2)$	$148.52(6)$	$147.73(10)$
$\mathrm{P}(1)-\mathrm{Hg}(1)-\mathrm{P}(2 \mathrm{a})$	$124.95(5)$	$125.78(9)$
$\mathrm{P}(2)-\mathrm{Hg}(1)-\mathrm{P}(2 \mathrm{a})$	$86.53(5)$	$86.48(9)$
$\mathrm{M}(1)-\mathrm{P}(1)-\mathrm{Hg}(1)$	$116.76(7)$	$115.74(11)$
$\mathrm{P}(1)-\mathrm{M}(1)-\mathrm{C}(5)$	$175.7(3)$	$175.1(4)$
$\mathrm{P}(1)-\mathrm{M}(1)-\mathrm{C}(4)$	$91.3(2)$	$92.4(3)$
$\mathrm{P}(1)-\mathrm{M}(1)-\mathrm{C}(3)$	$89.1(3)$	$95.9(3)$
$\mathrm{P}(1)-\mathrm{M}(1)-\mathrm{C}(2)$	$95.0(2)$	$89.3(3)$
$\mathrm{P}(1)-\mathrm{M}(1)-\mathrm{C}(1)$	$86.7(2)$	$85.4(3)$
$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{C}(12)$	$100.3(3)$	$100.5(5)$
$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(18)$	$112.6(3)$	$112.8(5)$

Table 1 , relevant distances and angles are given in Table 2. The chromium and tungsten complexes $\mathbf{1}$ and $\mathbf{3}$ are strictly isostructural. The molecular structure of $\mathbf{1}$ is shown in Fig. 1. In the solid state two $\left[\mathrm{t}-\mathrm{Bu} \mathrm{u}_{2} \mathrm{PHg}(\mu-\right.$ $\left.\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}$] units are associated in a pairwise fashion about a crystallographic inversion centre. The resulting four-membered $(\mathrm{Hg}-\mathrm{P})_{2}$ ring is substantially asymmetric. The short $\mathrm{Hg}-\mathrm{P}$ bridge distance is $252.2(2) \mathrm{pm}$, the longer one amounts to $268.9(2) \mathrm{pm}$. This is distinctly longer than the $\mathrm{Hg}-\mathrm{P}$ bond lengths in $[\mathrm{Hg}(\mathrm{t}-$ $\left.\mathrm{Bu}_{2} \mathrm{P}\right)_{2}$ (244.2(3) and $245.1(3) \mathrm{pm}$) [1]. The value of 268.9 pm exceeds the sum of the covalent radii (258 pm) [8]. An $\mathrm{Hg}-\mathrm{P}$ distance of $261.3(4) \mathrm{pm}$ has recently been reported for the complex $\left[\mathrm{Hg}(\mathrm{dppe})_{2}\right]\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)_{2}$ (dppe $=$ bis(diphenylphosphino)ethane) [9].

Even longer $\mathrm{Hg}-\mathrm{P}$ distances, namely 316 pm in $\left[\mathrm{Hg}\left(\mathrm{t}-\mathrm{Bu}_{2} \mathrm{P}\right)_{2}\right]$ and $324.6(1) \mathrm{pm}$ in $\left[\mathrm{Hg}\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{P}\right\}_{2}$, were proposed to correspond to secondary interactions [2], which exist only in the solid state (vide infra). These are only slightly below the van der Waals sum of 335 pm . The different bonding lengths in the four-membered $(\mathrm{Hg}-\mathrm{P})_{2}$ rings of $\mathbf{1}$ and $\mathbf{3}$ are accompanied by different $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ angles where the shorter $\mathrm{Hg}-\mathrm{P}$ distance is involved in the larger $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ angle (148.52(6) $)^{\circ}$. An increase in the $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ angle leads to an increase of the metal-ligand overlap population and consequently to stronger bonds [10]. The $\mathrm{Hg}-\mathrm{PPh}_{2}$ separation is $245.1(2) \mathrm{pm}$. This is slightly longer than for $\left[\mathrm{Hg}\left\{\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right]$ for which $242.7(2)$ and $243.0(2) \mathrm{pm}$ were observed [11]. The overall geometry of mercury is distorted trigonal planar: the mercury centre is 0.8 pm out of the plane defined by the three adjacent phosphorus atoms, but the $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ angles are not equal to 120°.

Fig. 1. Molecular structure of 1.

The mercury-mercury separation is 378.12 pm , which excludes any $\mathrm{Hg}-\mathrm{Hg}$ interaction.

2.3. NMR spectroscopy

The NMR patterns of 1 recorded at 173 K are consistent with a dimeric structure involving symmetric dibutyl-phosphido bridges. The equivalence of the t $\mathrm{Bu}_{2} \mathrm{P}-\mathrm{Hg}$ bonds may be the consequence of fluxional behaviour at this temperature. NMR spectra at even lower temperatures were, however, precluded by an insufficient solubility. The ${ }^{199} \mathrm{Hg}$ NMR spectrum of the isotopomer containing one ${ }^{199} \mathrm{Hg}$ nucleus (abundance 28.01%) shows interactions to two equivalent dibutyl-phosphido-phosphorus atoms and to two PPh_{2}-phosphorus atoms via one and three bonds respectively. The value of ${ }^{1} J \mathrm{HgP}$ involving the dibutyl-phosphido ligands $(201 \mathrm{~Hz})$ is extraordinary small when compared to a range of 125 to 17528 Hz for one bond couplings between ${ }^{199} \mathrm{Hg}$ and ${ }^{31} \mathrm{P}[12,13]$. This is probably related to the decreased s-character of the mercury-dibutylphosphido bond as a result of a weak coordination to the second Hg . In this context the $\mathrm{Hg}-\mathrm{P}$ coupling constants of $\left[\mathrm{Hg}\left(\mathrm{t}-\mathrm{Bu}_{2} \mathrm{P}\right)_{2}\right]$ and $\left[\mathrm{Hg}\left\{\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{P}\right\}_{2}\right]\right.$ would be of interest. These were, however, not observed, presumably because of intermolecular phosphido-group exchange. The ${ }^{31} \mathrm{P}$ NMR spectrum consists of two resonances flanked by ${ }^{199} \mathrm{Hg}$ satellites. The assignment to the dibutyl and diphenyl-phosphido groups was readily done according to the values of the $\mathrm{Hg}-\mathrm{P}$ coupling constants. Full NMR data are given in Section 3.

The NMR spectra are strongly temperature dependent. At ambient temperature, the ${ }^{31} \mathrm{P}$ signal of the dibutyl-phosphido groups is broadened ($W_{1 / 2}=60 \mathrm{~Hz}$) and shows no ${ }^{199} \mathrm{Hg}$ satellites. The chemical shift moves
ca. 50 ppm to low frequencies. This is attributed to the equilibrium Eq. (4)

$$
\begin{align*}
& 2\left[\mathrm{t}-\mathrm{Bu}_{2} \mathrm{PHg}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right] \\
& \quad \Rightarrow\left[\mu-\left(\mathrm{t}-\mathrm{Bu}_{2} \mathrm{P}\right) \mathrm{Hg}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right]_{2} \tag{4}
\end{align*}
$$

which appears to lie to the right at 173 K whereas at ambient temperature dissociation to the monomer takes place. The temperature dependence of the chemical shift is rationalised by a positive coordination shift which is usually observed for Hg complexes with phosphine ligands. The temperature dependence of the ${ }^{31} \mathrm{P}$ shift may also reflect changes in angles and stereochemistry at the phosphorus atom as a result of the formation of the four-membered $(\mathrm{HgP})_{2}$ ring $[14,15]$. The presence of only one signal for the dibutyl-phosphido ligands of the monomer and dimer demonstrates the interconversion of these species on the NMR time scale. The absence of Hg satellites indicates interrnolecular dibutyl-phosphido ligand exchange. It is interesting to note that the ${ }^{31} \mathrm{P}$ NMR spectra of $\left[\mathrm{Hg}\left\{\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2}\right\}_{2}\right]$ are consistent with a monomeric solution phase structure and were temperature invariant in the range of -78 to $+70^{\circ} \mathrm{C}[2]$.

3. Experimental section

3.1. Physical measurements

NMR spectra were recorded on Bruker WP 80 and AC 200 instruments. ${ }^{31} \mathrm{P}$ shifts are referenced against $85 \% \mathrm{H}_{3} \mathrm{PO}_{4},{ }^{199} \mathrm{Hg}$ chemical shifts are positive to high frequency of an aqueous $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}$ solution (2 mmol $\mathrm{HgO} / \mathrm{lcm}^{3} 60 \% \quad \mathrm{HClO}_{4}$). Microanalyses were per-
formed on a Heraeus EA 415 apparatus. Mass spectra were obtained on a Varian Mat $\mathrm{CH} 7(70 \mathrm{eV})$.

3.2. Preparation of the compounds

$\left[\mathrm{t}-\mathrm{Bu}_{2} \mathrm{PHgN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ [3], $\left[\mathrm{M}\left(\mathrm{HPPh}_{2}\right)(\mathrm{CO})_{5}\right]$ [16], $\left[\mathrm{Hg}\left(\mathrm{t}-\mathrm{Bu}_{2} \mathrm{P}\right)_{2}\right][3,17]$ and $\left[\mathrm{Hg}\left\{\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right\}_{2}\right]$ [7] were prepared according to published procedures. The following reactions were carried out under an atmosphere of dinitrogen.

3.2.1. $\left[t-\mathrm{Bu}_{2} \mathrm{PHg}\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right]$

(a) Samples of $\left[\mathrm{Hg}\left\{\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}\right\}_{2}\right](0.72 \mathrm{mmol})$ and of $\left[\mathrm{Hg}\left(\mathrm{t}-\mathrm{Bu}_{2} \mathrm{P}\right)_{2}\right](355 \mathrm{mg}, 0.72 \mathrm{mmol})$ were suspended in toluene $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ for $\left.\mathrm{M}=\mathrm{Mo}\right)(5 \mathrm{ml})$. The suspension is heated while stirring until a clear solution is obtained. Upon cooling the product crystallises as yellow needles in ca. 70% yield. The molybdenum complex 2 crystallises as the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct (2 . $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ content has been determined by ${ }^{1} \mathrm{H}$ NMR and can be readily removed in vacuo.

1: m.p. $156^{\circ} \mathrm{C}$ (decomp.). Anal. Found: C, 41.4 ; H, 3.7; $\mathrm{O}, 10.6 . \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{CrHgP}_{2} \mathrm{O}_{5}$. Calcd.: $\mathrm{C}, 41.53$; H , 3.90; O, 11.06. MS: 722, $\left[\mathrm{M}^{+}\right] .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ $\left(-100{ }^{\circ} \mathrm{C}\right.$, ambient temperature in parentheses, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 172.4(122.4)\left(\mathrm{Bu}_{2} \mathrm{P},{ }^{1} J \mathrm{HgP}=201 \mathrm{~Hz},{ }^{2} J \mathrm{PP}\right.$ $=50 \mathrm{~Hz}), 55.4(68.7)\left(\mathrm{Ph}_{2} \mathrm{P},{ }^{1} J \mathrm{HgP}=1545 \mathrm{~Hz},{ }^{3} J \mathrm{HgP}\right.$ $=104 \mathrm{~Hz}) .{ }^{199} \mathrm{Hg}\left({ }^{1} \mathrm{H}\right\}$ NMR $\left(-100^{\circ} \mathrm{C}\right.$, ambient temperature in parentheses, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 2225(1785).

2: m.p. $122^{\circ} \mathrm{C}$ (decomp.). Anal. Found: C, 39.1; H, 3.7; $\mathrm{O}, 10.2 . \mathrm{C}_{25} \mathrm{H}_{28} \mathrm{HgMoP}_{2} \mathrm{O}_{5}$. Calcd.: C, $39.15 ; \mathrm{H}$, 3.68; O, 10.43. MS: 727, [M $-\mathrm{C}_{3} \mathrm{H}_{5}^{+}$]. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(-100^{\circ} \mathrm{C}\right.$, ambient temperature in parentheses, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 167.8(122.5)\left(\mathrm{Bu}_{2} \mathrm{P}\right), 32.9(42.6)\left(\mathrm{Ph}_{2} \mathrm{P}\right)$.

3: m.p. $130^{\circ} \mathrm{C}$ (decomp.). Anal. Found: C, 35.1 ; H, 3.4; O, 9.4. $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{HgP}_{2} \mathrm{O}_{5} \mathrm{~W}$. Calcd.: $\mathrm{C}, 35.12 ; \mathrm{H}$, 3.30; O, 9.36. MS: 854, $\left[\mathrm{M}^{+}\right] .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(-100^{\circ} \mathrm{C}\right.$, ambient temperature in parentheses, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 170.3(122.8) ($\left.\mathrm{Bu}_{2} \mathrm{P}\right), \quad 12.1(22.8)\left(\mathrm{Ph}_{2} \mathrm{P}\right) .{ }^{199} \mathrm{Hg}\left\{{ }^{2} \mathrm{H}\right\}$ $\operatorname{NMR}\left(-100^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 2234$.
(b) Equimolar amounts of $\left[t-\mathrm{Bu}_{2} \mathrm{PHgN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$, and $\left[\mathrm{M}\left(\mathrm{HPPh}_{2}\right)(\mathrm{CO})_{5}\right]$ are mixed in toluene. The reaction is complete at ambient temperature within 1 h . The solvent and $\mathrm{HN}\left(\mathrm{SiMe}_{3}\right)_{2}$ is removed in vacuo leaving the product in quantitative yield.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of the phosphinito complexes (ambient temperature, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$); 1a: $145.1\left(\mathrm{Bu}_{2} \mathrm{PO}\right.$, $\left.{ }^{2} J \mathrm{PP}=133 \mathrm{~Hz}\right), 52.7\left(\mathrm{Ph}_{2} \mathrm{P}\right)$; 2a: $144.8\left(\mathrm{Bu}_{2} \mathrm{PO},{ }^{2} J \mathrm{PP}\right.$ $=127 \mathrm{~Hz}), 30.2\left(\mathrm{Ph}_{2} \mathrm{P}\right)$; 3a: $144.6\left(\mathrm{Bu}_{2} \mathrm{PO},{ }^{2} J \mathrm{PP}=\right.$ $137 \mathrm{~Hz}), 10.2\left(\mathrm{Ph}_{2} \mathrm{P}\right)$.

References

[t] B.L. Benac, A.H. Cowley, R.A. Jones, C.M. Nunn, T.C. Wright, J. Am. Chem. Soc. 111 (1989) 4986.
[2] S.C. Goel, M.Y. Chiang, D.J. Rauscher, W.E. Buhro, J. Am. Chem. Soc. 115 (1993) 160.
[3] J. Eichbichler, P. Peringer, Transition Met. Chem. 6 (1981) 313.
[4] J. Eichbichler, P. Peringer, J. Chem. Soc. Chem. Commun. (1982) 113.
[5] J. Eichbichler, P. Peringer, Chem. Ber. 117 (1984) 1215.
[6] P. Peringer, J. Eichbichler, J. Organomet. Chem. 241 (183) 281.
[7] P. Peringer, J. Eichbichler, J. Chem. Soc. Dalton Trans. (1982) 667.
[8] D. Grdenic, Quart. Rev. 19 (1965) 303.
[9] F. Cecconi, C.A. Ghilardi, P. Innocenti, S. Midollini, A. Orlandini, A. Ienco, A. Vacca, J. Chem. Soc. Dalton Trans. (1996) 2821.
[10] H.B. Buergi, R.W. Kunz, P.S. Pregosin, Inorg. Chem. 19 (1980) 3707.
[11] R. Malleier, K. Wurst, P. Peringer, unpublished results.
[12] J.G. Verkade, J.A. Mosbo, in: J.G. Verkade, L.D. Quin (Eds.), Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis. Organic Compounds and Metal Complexes, VCH, Weinheim, 1987, p. 445.
[13] M. Lusser, P. Peringer, Inorg. Chim. Acta 117 (1986) L25.
[14] A.J. Carty, S.A. MacLaughlin, D. Nuccarione. in: J.G. Verkade, L.D. Quin (Eds.), Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis. Organic Compounds and Metal Complexes, VCH, Weinheim, 1987, p. 559.
[15] P.E. Garrou, J. Chem. Educ. 81 (1981) 229.
[16] J.G. Smith, D.T. Thompson, J. Chem. Soc. A: (1967) 1694.
[17] M. Baudler, A. Zarkadas, Chem. Ber. 105 (1972) 3844.

[^0]: * Corresponding author.

